If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying x2 + -60x + 300 = 0 Reorder the terms: 300 + -60x + x2 = 0 Solving 300 + -60x + x2 = 0 Solving for variable 'x'. Begin completing the square. Move the constant term to the right: Add '-300' to each side of the equation. 300 + -60x + -300 + x2 = 0 + -300 Reorder the terms: 300 + -300 + -60x + x2 = 0 + -300 Combine like terms: 300 + -300 = 0 0 + -60x + x2 = 0 + -300 -60x + x2 = 0 + -300 Combine like terms: 0 + -300 = -300 -60x + x2 = -300 The x term is -60x. Take half its coefficient (-30). Square it (900) and add it to both sides. Add '900' to each side of the equation. -60x + 900 + x2 = -300 + 900 Reorder the terms: 900 + -60x + x2 = -300 + 900 Combine like terms: -300 + 900 = 600 900 + -60x + x2 = 600 Factor a perfect square on the left side: (x + -30)(x + -30) = 600 Calculate the square root of the right side: 24.494897428 Break this problem into two subproblems by setting (x + -30) equal to 24.494897428 and -24.494897428.Subproblem 1
x + -30 = 24.494897428 Simplifying x + -30 = 24.494897428 Reorder the terms: -30 + x = 24.494897428 Solving -30 + x = 24.494897428 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '30' to each side of the equation. -30 + 30 + x = 24.494897428 + 30 Combine like terms: -30 + 30 = 0 0 + x = 24.494897428 + 30 x = 24.494897428 + 30 Combine like terms: 24.494897428 + 30 = 54.494897428 x = 54.494897428 Simplifying x = 54.494897428Subproblem 2
x + -30 = -24.494897428 Simplifying x + -30 = -24.494897428 Reorder the terms: -30 + x = -24.494897428 Solving -30 + x = -24.494897428 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '30' to each side of the equation. -30 + 30 + x = -24.494897428 + 30 Combine like terms: -30 + 30 = 0 0 + x = -24.494897428 + 30 x = -24.494897428 + 30 Combine like terms: -24.494897428 + 30 = 5.505102572 x = 5.505102572 Simplifying x = 5.505102572Solution
The solution to the problem is based on the solutions from the subproblems. x = {54.494897428, 5.505102572}
| 7(3c+4)=2(3c-1) | | 5e^3x=0.3 | | 4x^2+13=125 | | 3+7x=9x-3 | | x^2+48x+60=0 | | y=19+6+69(21)+4x | | 3x^2-15=16 | | -9(-10+n)=-63 | | y=4.9(9)+73 | | x*0.08=(x-1)*0.1 | | -9n+9=36 | | 10+8r=90 | | 2.5x+6=13 | | 10(-1+v)=-110 | | 9(2+r)=-99 | | 3*5x=10*3x | | x*0.06=(x-1)*0.08 | | -1+3x=-52 | | -1=a-17 | | -19k=209 | | 34=16+k | | 3+4ln(k-11)=15 | | 5xa+2xb=30 | | 10h+9=79 | | 10b+5=8b+9 | | -3(2x-4)-1=-25+0 | | 35x^2-21= | | -(x-1)+5=-10-3x | | 9x(9-y)=1 | | -3(2x+4)+1=13 | | 3x+-1(5x-2y)=0 | | x^2-34x+33= |